Breadcrumb
Project Team
Integrating Precipitation Forecasts Errors Information into NextGen for Improved Flood Forecasting
Project type: Capstone project
Focal area: OWP-FA1 & OWP-FA7
Investigators
Humberto Vergara, Assistant Professor, University of Iowa (Lead PI)
Witold F. Krajewski, Professor, University of Iowa (Co-I)
Allen Bradley, Professor, University of Iowa (Co-I)
Matthew Green, Research Meteorologist, University of Colorado Boulder (Co-I)
Team
UI Team:
Mohamed Abdelkader, Postdoctoral Research Scholar, University of Iowa
Santiago Henao Gomez, PhD Student, University of Iowa
Felipe Quintero, Associate Research Scientist, University of Iowa
Ruben Molina, Assistant Research Scientist, University of Iowa
Vanessa Robledo, PhD Candidate, University of Iowa
WPC Team:
James Nelson, Development and Training Branch Chief, Weather Prediction Center
David Novak, Director, Weather Prediction Center
Relevant work
RO1 – Implement a QPF post-processing method to integrate prognostic information on rainstorm forecast errors:
Bradley, A. A., Habib, M., & Schwartz, S. S. (2015). Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resources Research, 51(9), 7382-7400. https://doi.org/https://doi.org/10.1002/2014WR016811
Erickson, M. J., & Nelson, J. A. (2023). Applying the Model Evaluation Tools Object Tracker to Quantify Feature-based Heavy Precipitation biases of Value to Forecasters. https://origin.wpc.ncep.noaa.gov/verification/mtd/about.php; https://origin.wpc.ncep.noaa.gov/verification/mtd_exp/about.php
Erickson, M. J., & Nelson, J. A. (2020). Development and Usage of the Heavy Precipitation Object Tracker (HPOT) 2020 Flash Flood and Intense Rainfall Experiment (FFaIR) Presentation, College Park, MD.
Robledo, V., Henao, J. J., Mejía, J. F., Ramírez-Cardona, Á., Hernández, K. S., Gómez-Ríos, S., & Rendón, Á. M. (2024). Climatological Tracking and Lifecycle Characteristics of Mesoscale Convective Systems in Northwestern South America. Journal of Geophysical Research: Atmospheres, 129(19), e2024JD041159.
Vergara, H., Gourley, J. J., & Erickson, M. (2023). An Efficient Ensemble Technique for Hydrologic Forecasting Driven by Quantitative Precipitation Forecasts. Journal of Hydrometeorology, 24(3), 479-495.
Vergara, H., Robledo, V., Henao, S., Quintero, F., & Weber, L. J. (2025). Analyzing the June 2024 Flood Event in Northwest Iowa: Challenges and Opportunities for Improved Warning Lead Times HEPEX 2025 Workshop – Celebrating 20 Years of Advancing Hydrological Forecasting, Tuscaloosa, Alabama. https://hepex.org.au/join-us-for-the-hepex-2025-workshop-celebrating-20-years-of-advancing-hydrological-forecasting/
RO2 – Design NextGen-compatible procedures for the assimilation of prognostic QPF error information
Quintero, F., Seo, B. C., Molina, R., Velasquez, N., & Demir, I. (2024). Adapting the Iowa Flood Center Hillslope Link Model for compatibility with the CIROH Nextgen Framework AGU Fall Meeting Abstracts, Washington, D.C. https://ui.adsabs.harvard.edu/abs/2024AGUFMH22C...07Q
Algorithm for TRACKing Convective Systems (ATRACKCS): https://ahwa.lab.uiowa.edu/algorithm-tracking-convective-systems-atrackcs
RO3 – Evaluate skill and computational requirements of deterministic and ensemble-based approaches
Abdelkader, M., Marouane, T., & Taha, B. M. J. O. (2023). Assessing the national water model’s streamflow estimates using a multi-decade retrospective dataset across the contiguous United States. Water 15 (13), 2319.
Krajewski, W. F., Goska, R., Post, R., Quintero, F., & Velasquez, N. (2025). Is This Rainfall Forecast Good or Bad? For Flood Forecasting, the Answer Is Scale Dependent. Bulletin of the American Meteorological Society, 106(9), E1772-E1793. https://doi.org/https://doi.org/10.1175/BAMS-D-24-0166.1
Seo, B. C., Krajewski, W. F., & Quintero, F. (2021). Multi‐scale hydrologic evaluation of the national water model streamflow data assimilation. JAWRA Journal of the American Water Resources Association, 57(6), 875-884.
Abdelkader, M., M. Temimi (2024). NWM Forecast Points at Gauged Locations and Hydrofabric Parameters for Model Assessment, HydroShare, http://www.hydroshare.org/resource/eb8961f8dcc2413cbe06d85322a428cc
Abdelkader, M., J. H. Bravo Mendez (2024). Retrieving and Visualizing MRMS Rainfall Data for Selected Locations and Time Periods, HydroShare, http://www.hydroshare.org/resource/455294614cd34379a8e95593bd1e38ac